

Astrophotography terms and concepts

Light pollution

- reduces contrast and visibility

- Bortle scale, a system for classifying the darkness of the night sky

<u>Telescope</u>

- OTA: "optical tube assembly"

- aperture: diameter of lens or mirror

- focal length: distance from lens/mirror to point where light converges to form the image

- focal ratio (f-number): ratio of focal length to aperture

Mounts - types

- Alt-azimuth: simple up/down and left/right movement
- Equatorial: aligned with earth's rotational axis
- Go-to: computerized mount that can find and track celestial objects

Mounts - functions

- Polar alignment: aligning the axis of an equatorial mount to the celestial pole

- Tracking: The ability of a mount to follow the apparent motion of celestial objects caused by Earth's rotation.

<u>Cameras</u>

- dSLR and mirrorless
- phone cameras
- dedicated astro cameras
 - planetary and deep sky
 - cooled and uncooled
 - one-shot colour (OSC) and mono
 - sensor size: cropped to full frame

Filters

- light pollution filters; block specific wavelengths of artificial light

- broadband: luminance, red, green, blue
- narrowband: Ha, O3, S2
- multiband filters (bi, tri, quad band)
- solar filters

Focussing

- by eye
- bahtinov mask

- electronic auto focusser

-coma corrector: corrects coma in Newtonian reflectors

- field flattener: corrects curvature of field, ensures sharp stars across the entire field

- focal reducer: a system of converging lenses that focusses the light into a smaller area at the focal plane, reducing the telescope's focal length and resulting in a wider field of view and a smaller f ratio (gathers more light efficiently, = shorter exposure times)

- guide camera & guide scope (autoguiding)
- dew heaters

- combining multiple exposures to create a master image.

- increases signal-to-noise ratio (SNR) and reveals fainter details

- noise:

- shot noise: randomness in the arrival of photons. Unavoidable
- read noise: noise from the camera's electronics. Constant, independent of exposure light being gathered
- dark current noise: generated by the sensor heating up during long exposures
- light pollution
- signal is constant across multiple exposures and will add up linearly
- noise is random; when combined across many images tends to cancel out Meeting 2, 14 July 2025

Single 3-minute exposure

Stacked 139 3-minute exposures

- Bias: images taken with the shortest possible exposure time with the lens cap on, used to calibrate the sensor's electronic read noise.

- Dark frames: Images taken with the same exposure time, temperature and ISO/gain as the light frames, with the lens cap on, used to calibrate thermal noise, amp glow and hot pixels.

- Flat Frames: Images taken with even illumination across the sensor, used to correct for vignetting and dust motes.

Bias frames

Dark frames

Gray 1:6 Dark_None_1x1_gain_200_600sec_frame10 | Dark(None)_1x1_gain_200_600sec_frame10....

Flat frames

Master flat frame

Flat-corrected Master light frame

Stretching

- most of the faint, low intensity data in an image will be contained within the dark, low end of the histogram

- "stretching" the histogram remaps the data from a narrow brightness range to a wider range, allowing details to become visible

Live demo

Here are 2 clips demonstrating stretching. No matter what software you use, the principle and process is the same.

Pixinsight: https://youtu.be/zLXnxllJJtw?si=y69vT3z8GP_AfUm4

Siril: https://youtu.be/joZvl-GMuWg?si=LowFAC7FFv3vAUc7

Dithering

- a technique that involves slightly shifting the telescope's pointing between exposures by a few pixels

- By shifting the image frame, hot pixels, cosmic rays, and other noise artifacts appear in different locations in each exposure.

- When the images are stacked, the noise artifacts are distributed across the frames, and the stacking process can effectively remove them

Gradient reduction

- remove the uneven brightness variations, often caused by light pollution or incorrect flat fielding, that can appear in the background of images. (see next slide for better visualization of gradient)

Gradient reduction

These images are the same as on the previous slide, but over-stretched to emphasise the gradient

